SERIAL INTERFACE SPECIFICATION FOR KAC-7600

Draft 1.0

2004. 8. 10

Korea Coin Mechatronics.,co.ltd.

CONTENTS

PART I Introduction

1.0 introduction

PART II Communication Format

- 1.0 Byte Format
- 2.0 Command Format
- 3.0 Data Format
- 4.0 ACK/NAK Format
- 5.0 Communication Type
- 6.0 Time Chart
- 7.0 Communication in detail

PART III Connector Configuration

1.0 Power Connector(J1)
2.0 RS-232 Connector(J10)
3.0 Coin Selector
4.0 Coin Hopper
5.0 Coin Dispensor

PART IV Hopper and Coin Dispensor Communication

1.0 COMMAND2.0 DATA COMMAND3.0 Input / Output DATA in Detail

PART V Coin Selector Communication

1.0 COMMAND2.0 DATA COMMAND3.0 Input / Output DATA in Detail

PART VI Block Diagram and Board dimension

PART I

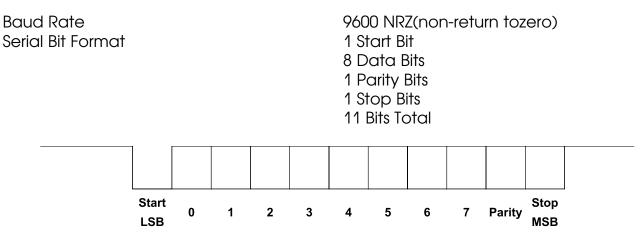
Introduction

1.0 Introduction

This document defines a serial bus interface for KAC-7600 Board.

The interface is a 9600 baud Master-Slave arrangement where all peripherals are slave to a master controller(ex.IBM compatible PC).

KAC-7600 is a interface board used to connect coin selector, coin dispensor and hopper to master controller by RS-232C.


The user can select coin dispensor or hopper by setting jumper of KAC-7600's JP1. If user link marked «cd» pin and center pin, It is set to use coin dispensor or If user link marked «HP» pin and center pin, It is set to use Hopper.

One of both, coin dispensor and Hopper is only can be used a time.

PART II

Communication Format

1.0 Byte Format

2.0 Command Format

Command consists of 2 bytes, first command byte and first command's inverted byte.

COMMAND (1Byte)							
MSB							LSB
0	1	1	1	0	0	0	0
L		1				2	
Devic	е		No. (5bit)			

2: Command No. (3bit)

3.0 Data Format

	FCC
vte Count(1 Bvte)	
, , , , , , , , , , , , , , , , , , , ,	
ata Command(1 Byte)	
ata Command's Type	
Bytes (N = 1,2,3, $\cdot \cdot \cdot$)	
X/TX Data	
rame Check Code(1 Byte)	
ven LRC(BC Including)	
$CC = BC \land DC \land DATA0 \land \cdot \cdot \land DATAn$	
	ata Command's Type Bytes (N = 1,2,3, •••) K/TX Data ame Check Code(1 Byte) /en LRC(BC Including)

4.0 ACK/NAK Format

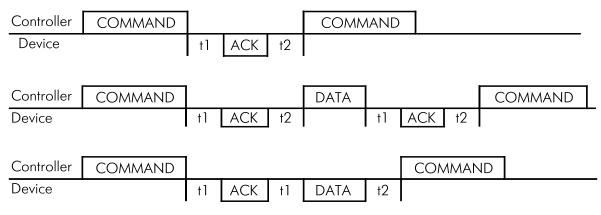
ACK/NAK consists of 1 byte.

Data(Hex)	Name	Description
11	ACK1	ACK responce except ACK2 through ACK4
22	ACK2	ACK when send 1 sort of data
33	ACK3	ACK when send 2 and above sorts of data
EE	NAK	NAK when not acknowledged data or command correctly

5.0 Communication Type

5.1.1 Controller send command to Device. and Device ACK or NAK.

Controller	COMMAND		
Device		ACK/NAK	


5.1.2 Controller send command and data to Device. and Device ACK or NAK.

Controller	COMMAND		DATA		
Device		ACK/NAK		ACK/NAK	

5.1.3 Device send data to Controller.

Controller	COMMAND			
Device		ACK2/ACK3	DATA	

6.0 Time Chart

- T1 : 100 µs ~ 2ms
- T2 : 600 µs or above

7.0 Communication in detail

7.1 Data Command

Device operate based on Data.

7.2 Data Request Command

There are 3 kinds of responce.

7.2.1 When Device's status doesn't changed, ACK1 just.

Controller	Data Request			
Device		ACK	1	

7.2.2 When device's status changed only one thing, ACK2 and changed data.

Controller	Data Request	_		
Device		ACK2	DATA	

7.2.3 When device's status changed 2 things and above, ACK3 and changed data.

Controller	Data Request				
Device		AC	<3	DATA	

7.3 All Request Command Device transmit ACK1 with all data.

Controller	All Request			
Device	-	ACK3	DATA	

PART III

Connector Configuration

1.0 Power Connector(J1)

Pin	Signal	In/Out	Description
1	+24V	In	+24V DC
2	GND	In	GND

- 1.1. Connector Type : 5267-02(Molex)
- 1.2. Power Requirement : +24Vdc, 2.5A

2.0 RS-232 Connector(J10)

Pin	Signal	In/Out	Description
1	GND	In	GND
2	TX	Out	Tx signal
3	RX	In	Rx signal

2.1. Connector Type : 5267-03(Molex)

3.0 Coin Selector (J2)

Pin	Signal	In/Out	Description				
1	REJ	Out	Reject				
2	DIS	In	Disable				
3	Coin D	Out	Coin Signal D				
4	Coin C	Out	Coin Signal C				
5	Coin B	Out	Coin Signal B				
6	Coin A	Out	Coin Signal A				
7	-	-	Not used				
8	-	-	Not used				
9	-	-	Not used				
10	GND	In	Power Ground				
11	+5V	In	Power +5V				
12	+24V	In	Power +24V				

3.1. Connector Type : 53015-12(Molex)

3.2. Selector Timing Chart

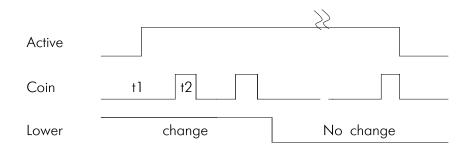
Insert (Internal)	Insert t1	t6 Inhibit
Insert Confirm(Internal)	t2 t3	
Coin Pulse(External)	t4	
Solenoid on(Internal)	t5	
Disable Input(External)		tó
► t1 = 55 ~ 70 ms	• t2 = 10 ~ 20 ms	

- ▶ t2 = 10 ~ 20 ms
- ▶ t3 = 35 ~ 50 ms ▶ t4 = 50 ms \blacktriangleright t6 = 5 ms above
- ▶ t5 = 300 ~ 340 ms
- 3.3. Coin Pulse in detail
 - 1 cent = Coin_C + Coin_D
 - ▶ $5 \text{ cent} = \text{Coin}_D$
 - ▶ 20 cent = Coin C
 - $\bullet 1 euro = Coin_A + Coin_D$
- 2 cent = Coin_B + Coin_C + Coin_D
- ► 10 cent = $Coin_B$
- ► 50 cent = Coin A
- 2 euro = Coin_A + Coin_B

4.0 Coin Hopper (J6, J7, J8, J9)

Pin	Signal	In/Out	Description				
1	+24V	Out	+24VDC				
2	-	-	Not used				
3	GND	Out	GND				
4	Active	Out	HP Operating Signal				
5	Coin	In	Coin ejecting Signal				
6	Lower	In	Change Remain Signal (Lower)				
7	Upper	In	Change Remain Signal (Upper)				
8	Error	In	Error Signal				

- 4.1. Connector Type : 35312-07(Molex)
- 4.2. Selector Timing Chart


Active	operating	Stop
Coin	t1 t2	
Lower	change No change	e
Upper	change No	change
Error	normal	

▶ 11 = 94 ± 2 ms
▶ 12 = 30 ± 2 ms

5.0 Coin Dispensor (J4, J5)

Pin	Signal	In/Out	Description
1	+24V DC	ln	+24V DC
2	+5V DC	ln	+5V DC
3	GND	ln	GND
4	Enable_A	Out	Motor Enable (A Coin Dispensor)
5	Coin_A	ln	Coin Out Pulse (A Coin Dispensor)
6	Change_A	ln	Change Remain Signal (A Coin Dispensor)
7	Enable_B	Out	Motor Enable (B Coin Dispensor)
8	Coin_B	ln	Coin Out Pulse (B Coin Dispensor)
9	Change_B	In	Change Remain Signal (B Coin Dispensor)

- 5.1. Connector Type : 5267-09(Molex)
- 5.2. Selector Timing Chart

▶ t1 = 94 ± 2 ms ▶ t2 = 30 ± 2 ms

PART IV

Hopper and Coin Dispensor Communication

1.0 COMMAND

Command(2bytes)		Name	Description				
0x70	0x70 0x8F Reset		Reset variables, error clear				
0x71	0x71 0x8E All Request		Request all data to Hopper				
0x72	0x72 0x8D Data Request		Request changed data to Hopper				
0x73	0x8C	Command output	Command Hopper to act according to Data				

1.1 DATA COMMAND

Direction	Name	DC	Description	Byte No.		
Main Controller \rightarrow	Dispence	00	Set the dispence count each byte a	4		
Hopper	count		Hopper			
	Dispenced	15	Send the dispenced count each byte	4		
	Count	15	a Hopper	4		
			Send data when abnormal operation			
Hopper →	Error	16	detected.	4		
Main Controller			ex)Jamming.			
Main Contoller	Sensor	17	Send the remained coin detecting	4		
	Status		sensor status each byte a Hopper	4		
	Operating	18	Send Hopper operating status	1		
	Status	18	ex)dispencing or end			

1.2 Input / Output DATA in Detail

1.2.1 Dispence count

Byte No.	MSE	3	Each bit(8bit all)				LS	В	Byte Name
1st byte	0	0	0	1	0	0	0	0	Header(0x00)
2nd byte	0	0	0	0	0	0	0	0	1st Hopper
3rd byte	0	0	0	0	0	0	0	0	2nd Hopper
4th byte	0	0	0	0	0	0	0	0	3rd Hopper
5th byte	0	0	0	0	0	0	0	0	4th Hopper

ex) If user want to dispence 5 coins using 2nd Hopper,

Then write 0x05(hex) to 2nd byte, and send that data to Hopper Interface Board. Set possible coin count is 255 (decimal), 0xff(hex).

After Hopper Interface Board (KAC-7600) Acked,

The Hopper launch to dispence.

1.2.2 Dispenced Count

Byte No.	MSB Each bit(8			8bit all	Bbit all) LSB			Byte Name	
1st byte	0	0	0	1	0	1	0	1	Header(0x15)
2nd byte	0	0	0	0	0	0	0	0	1st Hopper
3rd byte	0	0	0	0	0	0	0	0	2nd Hopper
4th byte	0	0	0	0	0	0	0	0	3rd Hopper
5th byte	0	0	0	0	0	0	0	0	4th Hopper

When main controller send Data Request(0x72,0x8d) command to KAC-7600, KAC-7600 will answer each Hopper's dispenced count.

ex) If 1st byte is 0x10, It means 1st Hopper dispenced 16 coins now.

1.2.3 Error

Byte No.	MSB Each bit(8			8bit all)	Bbit all) LSB			Byte Name	
1st byte	0	0	0	1	0	1	1	0	Header(0x16)
2nd byte	0	0	0	0	0	0	2	1	1st Hopper
3rd byte	0	0	0	0	0	0	2	1	2nd Hopper
4th byte	0	0	0	0	0	0	2	1	3rd Hopper
5th byte	0	0	0	0	0	0	2	1	4th Hopper

There are two type of responce from KAC-7600.

Α.	2	1	:	00 - Hopper normal
----	---	---	---	--------------------

B. ② ① : 01 - Hopper abnormal

1.2.4 Sensor Status

Byte	e No.	M	SB	E	Each bit			LSB		Byte Name
lst	byte	0	0	0	1	0	1	1	1	Header(0x17)
2nc	byte	0	0	0	0	0	0	2	1	1st Hopper
3rd	byte	0	0	0	0	0	0	2	1	2nd Hopper
4th	byte	0	0	0	0	0	0	2	1	3rd Hopper
5th	byte	0	0	0	0	0	0	2	1	4th Hopper

There are two type of responce from KAC-7600.

А.	2	1:	0 0 - Hopper´s bowl is empty.
В.	2	1):	0 1 - Hopper's bowl is filled to lower detecting sensor
C.	2	1):	10 - Hopper's bowl is filled to upper detecting sensor
			If user use HP-1000 or HP-1500, user should don't care ${}^{\odot}$ bit.
			for HP-1000 or HP-1500 doesn't support upper detecting sensor.

1.2.5 Operating Status

Byte No.	MS	SВ	E	ach bit	8bit all)		L	SB	Byte Name
1st byte	0	0	0	1	1	0	0	0	Header(0x18)
2nd byte	0	0	1	0	0	0	0	1	

- A. ①: 0 dispence completed
- B. ①:1-dispencing
- C. $@: \emptyset x \emptyset 1$ Coin dispensor Selected
- D. 2 : ØxØ2 Hopper Selected

PART V

Coin Selector Communication

1.0 COMMAND

Command(2bytes)		Name	Description
0x61	0x9E All Request		Request changed data to Coin Selector
0x62	0x9D	Data Request	Request all data to Coin Selector
0x63	0x9C	Command output	Command Coin Selector to act according to Data

2.0 DATA COMMAND

Direction	Name	DC	Description	Byte No.	
Main Controller \rightarrow	Control	00	Cain Salastar control command	1	
Coin Selector	Command	00	Coin Selector control command		
	Coin	08	Each coins inserted count	4	
Coin Selector \rightarrow	Count	00		4	
Main Controller	Selector			1	
	Status	OB	Coin Selector's Status		

3.0 Input / Output DATA in Detail

3.0.1 Control Command

Byte No.	MS	В	E	ach bit(8bit all) LSB				Byte Name
1st byte	0	0	0	0	0	0	0	0	Header(0x00)
2nd byte	0	0	0	0	0	0	2	1	Data

If ① bit is set to one, Coin selector is enabled.

or ① bit is set to zero, Coin selector is disabled.

If user want to clear each coin's count, then set 2 to one.

so user clear coin selector's coin count to zero.

3.0.2 Coin count

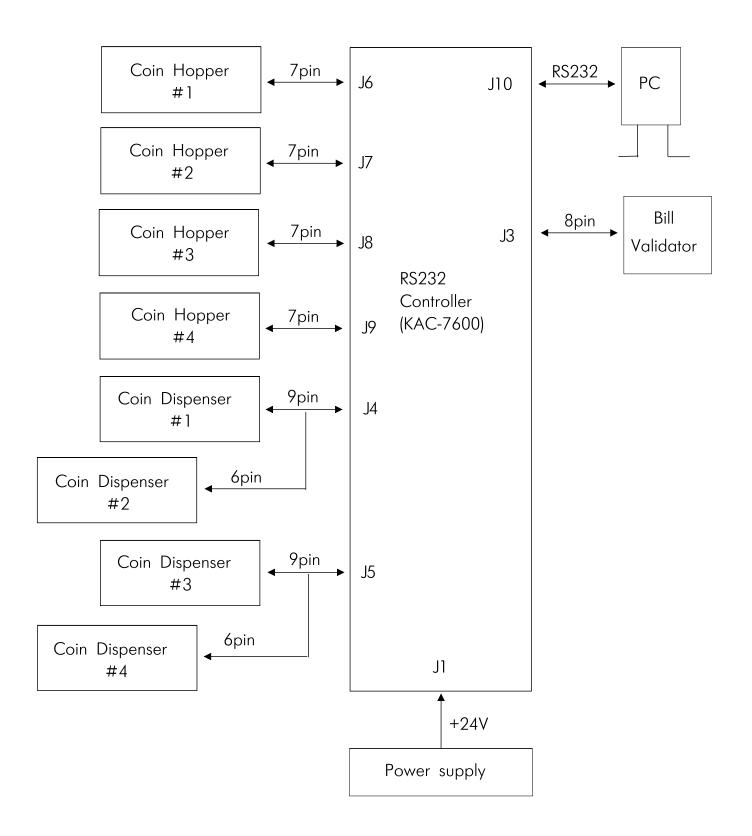
Byte No.	MSI	В	E	ach bit(8bit all)		L	SB	Byte Name
1st byte	0	0 0 0 0 1 0 0 0							Header(0x08)
2nd byte	1								10 cent
3rd byte	3rd byte ②								20 cent
4th byte	4th byte ③								
5th byte ④						1 dollor			

each byte represents each coin's coin counts. ex)If is set to 0x0a, all inserted 10cent is 10ea.

3.0.3 Selector status

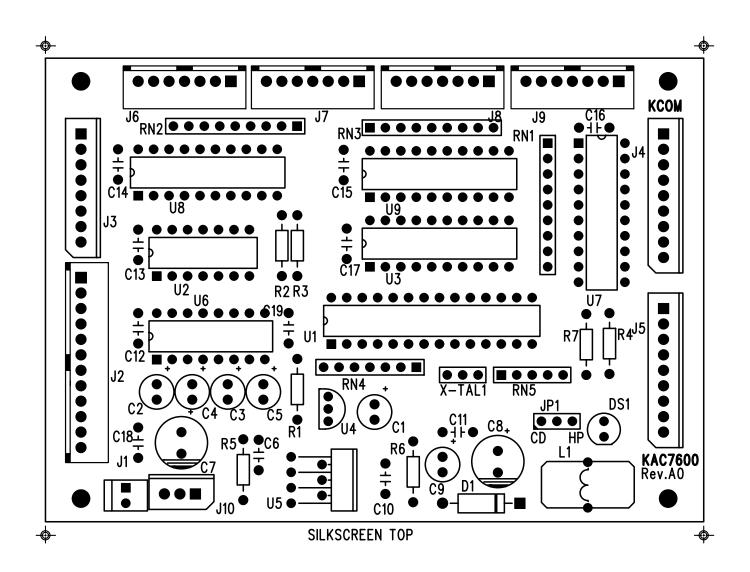
Byte No.	MS	В	Ec	ach bit(8bit all)	LS	В	Byte Name
1st byte	0	0	0	0	1	0	1	1	Header(0x0B)
2nd byte	0	5	4	0	3	2	0	1	Data

If 1) bit is set to one, Coin selector is enabled.

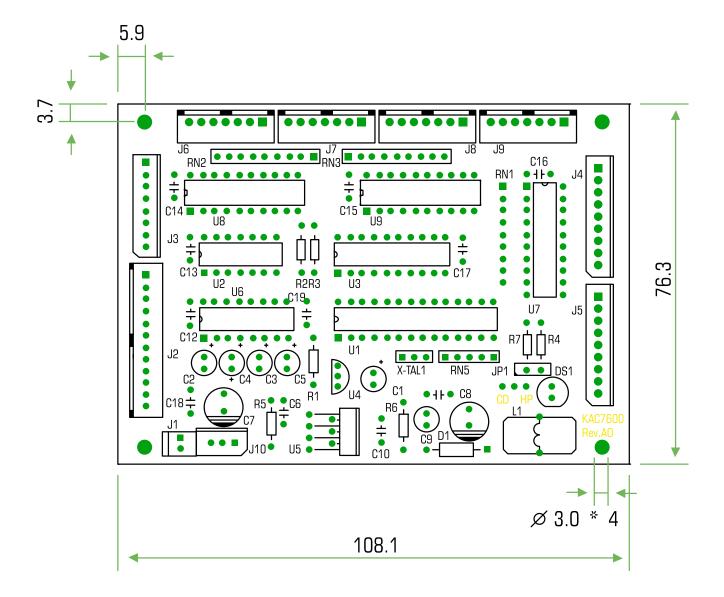

or ① bit is set to zero, Coin selector is disabled.

If ④ bit is set to one, Coin count is cleared

If ⑤ bit is set to one, Coin selector is errored.


If 2 bit is set to one, Coin selector's sensor is errored.

If 3 bit is set to one, Coin selector is jammed by coin.



PART VI

Block Diagram and Board dimension

